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Abstract

Dementia with Lewy bodies (DLB) is an age-associated neurodegenerative disorder producing progressive
cognitive decline that interferes with normal life and daily activities. Neuropathologically, DLB is characterised by
the accumulation of aggregated α-synuclein protein in Lewy bodies and Lewy neurites, similar to Parkinson’s
disease (PD). Extrapyramidal motor features characteristic of PD, are common in DLB patients, but are not essential
for the clinical diagnosis of DLB. Since many PD patients develop dementia as disease progresses, there has been
controversy about the separation of DLB from PD dementia (PDD) and consensus reports have put forward
guidelines to assist clinicians in the identification and management of both syndromes. Here, we present basic
concepts and definitions, based on our current understanding, that should guide the community to address open
questions that will, hopefully, lead us towards improved diagnosis and novel therapeutic strategies for DLB and
other synucleinopathies.
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Synucleinopathies: a general overview
The synucleinopathies comprise several neurodegenera-
tive disorders characterised by the accumulation of ag-
gregated forms of the protein α-synuclein (α-syn) in
both neuronal and non-neuronal cells in the brain. Most
idiopathic synucleinopathies are age-associated and,
therefore, their prevalence is increasing in parallel with
the world wide increase in life expectancy [1]. Synuclei-
nopathies are second to Alzheimer’s disease (AD)
amongst the most common neurodegenerative disorders
known to cause dementia [2]. As with most neurodegen-
erative disorders, there are still no disease-modifying
drugs, limiting treatment options to symptomatic relief
and palliative measures. Therefore, synucleinopathies
pose a growing socio-economic burden to modern soci-
eties, and demand urgent attention.
Most synucleinopathies are Lewy body diseases (LBD),

as they are characterised by the accumulation of aggre-
gated a α-syn into Lewy bodies (LBs) within vulnerable

neurons and Lewy neurites (LN) in neuronal processes
[3]. The LBD comprise Parkinson’s disease (PD), Par-
kinson’s disease dementia (PDD), and dementia with
Lewy bodies (DLB), among other less common disor-
ders [4]. The central role of α-syn in LBD originated
from almost simultaneous findings of mutations in
the gene encoding for α-syn (SNCA) in familial forms
of PD [5], and of α-syn comprising the major protein
component of Lewy bodies [3].
Multiple system atrophy (MSA) is neuropathologically

characterised by accumulation of aggregated α-syn in ol-
igodendrocytes, inclusions known as glial cytoplasmic
inclusions (GCIs) [4, 6], while LB pathology is absent
and, therefore, MSA is not an LBD.
The initial clinical and neuropathological studies

which established the distinct clinical and neuropatho-
logical phenotype of the disorder now known as DLB,
preceded immunohistochemical methods to detect α-syn
in human brain tissue, but later revisions of international
consensus for diagnostic guidelines now recommend the
use of immunohistochemistry [7–11].
Clinical under-diagnosis of DLB [12], and over-diagnosis

of PD [13, 14], have led to most studies of LBD focusing on
PD and PDD, leaving DLB historically under-researched

* Correspondence: tiago.outeiro@newcastle.ac.uk;
Ian.McKeith@newcastle.ac.uk
1Institute of Neuroscience, The Medical School, Newcastle University,
Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Outeiro et al. Molecular Neurodegeneration            (2019) 14:5 
https://doi.org/10.1186/s13024-019-0306-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s13024-019-0306-8&domain=pdf
http://orcid.org/0000-0003-1679-1727
mailto:tiago.outeiro@newcastle.ac.uk
mailto:Ian.McKeith@newcastle.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


relative to its population prevalence. Increasing recognition
of DLB as a distinct and prevalent age-associated neurode-
generative dementia has stimulated increasing numbers of
high-quality studies on its aetiology and pathogenesis. Here,
we summarise contemporary findings from this rap-
idly expanding field, focusing on genetics, diagnostic
biomarkers and molecular mechanisms.

The clinical definition of DLB
DLB is now the preferred term [8, 10, 11] for a variety of
previously used clinical diagnoses including diffuse LB
disease (DLBD) [15–17], LB dementia [18], dementia as-
sociated with cortical Lewy bodies (DCLB) [19], the LB
variant of Alzheimer’s disease (LBVAD) [20, 21], and se-
nile dementia of LB type (SDLT) [22].
Recognition and definition of the DLB syndrome ori-

ginally occurred through post-mortem neuropathological
observations, of a particular distribution of LB and LN
in the brains of elderly subjects with dementia, followed
by a retrospective review of their clinical histories [23].
This revealed two major findings – the first was that a
significant number of LB pathology cases had a clinical
presentation that was discernibly different from other
dementia subtypes, even at an early stage in the disease.
Fluctuating levels of cognitive impairment, recurrent vis-
ual hallucinations, spontaneous extrapyramidal motor
features and a history of rapid eye movement (REM)
sleep behavior disorder (RBD) were the most prominent
symptoms, and the presence of two or more of these
symptoms in an individual with dementia is now consid-
ered sufficient for a clinical diagnosis of probable DLB.
The other major observation was that approximately

50% of subjects showing full blown DLB pathology at
neuropathological post-mortem examination did not
show the characteristic clinical picture of DLB during
life but typically presented with global cognitive decline
reminiscent of AD. Unsurprisingly, such cases usually
show additional high levels of AD neuropathological
change [24, 25]. The true prevalence of such mixed
pathology cases is unknown but autopsy studies indicate
that between a third and a half of carefully clinically di-
agnosed AD show at least some degree of LB pathology
at autopsy [20, 26]. Complex visual hallucinations are
the only clinical feature indicating the likely presence of
LB pathology in an otherwise typical AD case [27], but
robust data on progression, prognosis and response to
treatments of “mixed AD+DLB” (i.e., cases showing both
full blown AD and DLB pathology) are lacking.
While a recent UK estimate found that only 4.6% of

specialist dementia service referrals were clinically diag-
nosed with DLB [28], substantial LB pathology was
present in about 20% of post-mortem brains, further
underpinning the general under-diagnosis of DLB during
life. Moreover, there was substantial variability in DLB

clinical diagnosis rates (2.4% - 5.9%) between individual
clinicians working in geographically proximal services
suggesting that performance could be improved sim-
ply by better application of clinical methods and by
increased use of biomarkers (see section "Biomarkers
in LBD").
The current clinical diagnostic criteria for DLB are

shown in Table 1. Dementia, defined as a progressive
cognitive decline of sufficient magnitude to interfere
with normal social or occupational functions, or with
usual daily activities, is an essential requirement. Dispro-
portionate attentional, executive function and visual pro-
cessing deficits relative to memory and naming are
typical features. Diagnostic toolkits have been published
to assist clinicians to identify the core clinical features
[29–31] but no DLB-specific cognitive batteries have yet
been developed.
The item generally causing the most difficulty in as-

sessment is the identification of cognitive fluctuation. It
is recommended to use one of several published
methods which typically use a series of structured ques-
tions asking: (i) about changes in the patient’s level of
functioning during the day; (ii) about excessive daytime
drowsiness; or (iii) about difficulty in arousing the pa-
tient so they maintain attention throughout the day.
RBD can be difficult to differentiate from the numerous
other sleep disturbances that can occur in dementia un-
less the care-taker is specifically asked whether they have
ever seen the patient appear to "act out his/her dreams"
while sleeping (punching or flailing arms in the air,
shouting or screaming). Assessment of parkinsonism can
be problematic, especially when the clinician is not an
expert movement disorder neurologist, since motor fea-
tures may be absent in up to 25% of autopsy confirmed
DLB cases and, even when present, may be very mild.
Documentation of only one of the cardinal features,
bradykinesia, resting tremor, or rigidity, is required for
DLB, while at least two are required to diagnose PD.
Co-morbidities, e.g. arthritis, or inability to comply with
neurological examination because of cognitive impair-
ment may lead to false positive diagnoses.
Recurrent, complex visual hallucinations, which occur

in the majority of DLB patients, pose less problems of
recognition, provided that the clinician asks directly
about them and quantifies their severity with an appro-
priate scale. They are typically well formed, featuring
people or animals, and may be accompanied by related
phenomena including passage hallucinations, sense
of presence and visual illusions. Patients are typically
able to report these experiences, as are observant
caregivers [23].
A case of probable DLB established using consensus

criteria has been estimated as having a diagnostic speci-
ficity at autopsy of ~85%, possibly the highest of the
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common neurodegenerative dementia subtypes. The ex-
tent to which the addition of indicative biomarkers in
the revised DLB criteria will increase this specificity, re-
mains to be determined [32].
Additional clinical features are known to be supportive

of a DLB diagnosis. These are symptoms that are com-
monly present, sometimes early [33] and which may in-
dicate DLB in a patient with dementia, particularly when
they persist over time or if several occur in combination
(Table 1).
Another important issue to consider is the relationship

between the diagnosis of DLB and that of dementia oc-
curring in a patient with a pre-existing clinical diagnosis
of PD, usually referred to as PDD. This has been a
source of controversy and, therefore, needs clarification
and continued research efforts. Although the end stage
neuropathological findings in such cases may be similar,
there can be little doubt that the clinical experience of
the patients and their families will have been very differ-
ent. DLB is typically a disorder associated with cognitive
impairment in which extrapyramidal motor features are
often mild or absent, at least until the late stages. In
contrast, PDD is characterised by early and prominent
extrapyramidal motor features required for PD diagno-
sis, with neuropsychiatric and cognitive symptoms oc-
curring later. Undoubtedly, the two distinct clinical
syndromes of DLB and PD/PDD share underlying patho-
mechanisms and, while the reasons for the clinical het-
erogeneity may be due to different propagation patterns
of α-syn pathology across different neuronal pathways,
the additive effects of concomitant AD pathology which
is more common and severe in DLB as compared to
PD/PDD should be taken into consideration. Hence, it is
inappropriate to simply use PD as an umbrella term for
all LBD, and this is reflected in the original formulation
of the “one-year rule” (bottom of Table 1) by which DLB
should be diagnosed when dementia occurs before, or
concurrently with parkinsonism, while the term PDD
should be used to describe dementia that occurs in the
context of well-established PD ([34] for further discus-
sion). This approach, adopted by DSM5 [35] and the
final draft of ICD-11 [36], both of which recommend the
distinction of DLB and PDD, suggests that this conven-
tion will remain in use until new scientific insight allows
to distinguish between DLB and PD/PDD based on
specific and well characterized differences in their re-
spective pathomechanisms.
The mean age of onset of PDD and DLB is similar at

>70 years whereas PD onset is typically earlier with a
mean of 60 years. Data regarding the comparative age
related prevalence of PDD and DLB are limited with
some suggesting that DLB patients are younger at symp-
tom onset than those with PDD and with more halluci-
nations and cognitive fluctuations; and others reporting

Table 1 Revised criteria for the clinical diagnosis of probable
and possible DLB

Essential for a diagnosis of DLB is dementia, defined as a progressive
cognitive decline of sufficient magnitude to interfere with normal social
or occupational functions, or with usual daily activities. Prominent or
persistent memory impairment may not necessarily occur in the early
stages but is usually evident with progression. Deficits on tests of
attention, executive function and visuo-perceptual ability may be
especially prominent and occur early.
Core clinical features
(the first three typically occur early and may persist throughout the
course)
Fluctuating cognition with pronounced variations in attention and
alertness.
Recurrent visual hallucinations that are typically well formed and
detailed.
REM sleep behaviour disorder (RBD) which may precede cognitive
decline.
One or more spontaneous cardinal feature of parkinsonism – these
are bradykinesia (defined as slowness of movement and decrement in
amplitude or speed), rest tremor, or rigidity.

Supportive clinical features
Severe sensitivity to antipsychotic agents ; postural instability ;
repeated falls ; syncope or other transient episodes of
unresponsiveness.; severe autonomic dysfunction e.g. constipation,
orthostatic hypotension, urinary incontinence ; hypersomnia;
hyposmia; hallucinations in other modalities; systematized delusions;
apathy, anxiety and depression.

Indicative biomarkers
Reduced dopamine transporter (DaT) uptake in basal ganglia
demonstrated by SPECT or PET
Abnormal (low uptake) MIBG myocardial scintigraphy
Polysomnographic confirmation of REM sleep without atonia

Supportive biomarkers
Relative preservation of medial temporal lobe structures on CT/MRI scan
Generalised low uptake on SPECT/PET perfusion/metabolism scan
with reduced occipital activity +/- the cingulate island sign on
FDG-PET imaging
Prominent posterior slow wave activity on EEG with periodic
fluctuations in the pre-alpha/theta range

Probable DLB can be diagnosed if:
a) two or more core clinical features of DLB are present, with or without
the presence of indicative biomarkers or
b) only one core clinical feature is present, but with one or more
indicative biomarkers

Probable DLB should not be diagnosed on the basis of biomarkers alone
Possible DLB can be diagnosed if:
a) only one core clinical feature of DLB is present, with no indicative
biomarker evidence, or
b) one or more indicative biomarkers is present but there are no core
clinical features

DLB is less likely:
a) in the presence of any other physical illness or brain disorder
including cerebrovascular disease, sufficient to account in part or in
total for the clinical picture, although these do not exclude a DLB
diagnosis and may serve to indicate mixed or multiple pathologies
contributing to the clinical presentation.
or
b) if parkinsonian features are the only core clinical feature and
appear for the first time at a stage of severe dementia.
DLB should be diagnosed when dementia occurs before, or
concurrently with parkinsonism. The term Parkinson’s disease
dementia (PDD) should be used to describe dementia that occurs in
the context of well-established Parkinson’s disease. In a practice
setting the term that is most appropriate to the clinical situation
should be used and generic terms such as LB disease are often
helpful. In research studies in which distinction needs to be made
between DLB and PDD the existing one-year rule between the onset
of dementia and parkinsonism continues to be recommended.

Adapted from [11]
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younger age at disease onset in PDD or no essential dif-
ferences between disorders [37].

Biomarkers in DLB
The diagnostic criteria of DLB identify ‘indicative’ and
‘supportive’ biomarkers based upon their diagnostic spe-
cificity and the volume of good quality evidence available
(Table 1) [11]. The presence of an indicative biomarker
in combination with a single core clinical feature is suffi-
cient for a diagnosis of probable DLB. Supportive bio-
markers are consistent with DLB but lack the specificity
of the indicative biomarkers.

Indicative biomarkers
Striatal dopamine transporter imaging
Like PD, DLB is associated with nigrostriatal dopamin-
ergic neuron loss. This can be detected using SPECT or
PET imaging using a ligand that binds to presynaptic
dopamine transporters (e.g. N-ω-fluoropropyl-2β-carbo-
methoxy-3β-(4-iodophenyl) nortropane (FP-CIT)). Visually
rated FP-CIT SPECT has a sensitivity of 78% and specificity
of 90% to differentiate probable DLB from other dementias
when compared with clinical diagnosis [38]. This has been

confirmed with post-mortem diagnosis [39]. The
upper limit of sensitivity of FP-CIT SPECT reflects
the absence of substantia nigra pathology sufficient to
cause an abnormal scan in some cases of DLB [40,
41].
FP-CIT SPECT images can be rated visually using a

scale developed for PD [42], though many cases of DLB
are difficult to classify using this scale (Fig. 1a) [43].
Clinical reports often use a combination of visual inter-
pretation and semi-quantitative analysis, which has been
shown to increase reader confidence [44, 45].
Dopamine transporter imaging should not be used to

differentiate DLB from frontotemporal dementia, progres-
sive supranuclear palsy, corticobasal syndrome or multiple
system atrophy as these conditions can also be associated
with reduced striatal dopamine transporters [46].

MIBG Myocardial scintigraphy
Cardiac autonomic denervation is found in Lewy body
diseases such as PD, DLB and pure autonomic failure
[47]. Meta-iodobenzylguanidine (MIBG) is a noradren-
aline analogue that binds to presynaptic cardiac auto-
nomic nerve terminals. MIBG binding in the heart is

A

B C

Fig. 1 Indicative biomarkers for dementia with Lewy bodies. A. N-ωfluoropropyl-2β-carbomethoxy- 3β-(4-iodophenyl) nortropane (123I-FP-CIT
SPECT) single photon emission tomography (SPECT). Axial images from FP-CIT SPECT at the level of the striatum. Grade 0 – normal uptake in left
and right striatum. Grade 1 – unilateral decreased uptake in putamen [42]. Grade 2: bilateral uptake in putamen. Grade 3: virtually absent uptake
bilaterally in the caudate and putamen. Balanced bilateral loss in the caudate and putamen is often seen in DLB, which does not fit easily into
any Benamer scale category. B. Cardiac Meta-iodobenzylguanidine (MIBG SPECT) Imaging. The top image is normal, with a clear cardiac outline
visible (arrow, HMR=3.14). The bottom image is abnormal with no visible cardiac outline (HMR=1.03). C. Polysomnography (PSG) recording
demonstrating episodes of REM sleep without atonia on electro-oculogram (EOG) measuring eye movements, electroencephalogram (EEG) and
electromyogram (EMG) measuring chin movement. With thanks to Dr Sean Colloby (a), Ms Gemma Roberts (b) and Dr Kirstie Anderson (c)
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compared to non-specific binding in the mediastinum
(H:M ratio, Fig. 1b). Single centre studies have demon-
strated high sensitivity and specificity of MIBG scintig-
raphy [48–50]. The only multicentre study to date found a
sensitivity of 69% and specificity of 89% [51]. The diagnos-
tic accuracy of MIBG in this study improved when com-
pared with clinical diagnosis 3 years after the scan
(sensitivity 77%, specificity 97%) [52].
A limitation of MIBG scintigraphy is that comorbid

conditions and medications can reduce cardiac MIBG
uptake [53]. As a result, studies have excluded partici-
pants with common conditions such as heart failure, is-
chaemic heart disease and poorly-controlled diabetes
[51]. Thresholds for abnormality in H:M ratio differ be-
tween centres, due in part to differences in collimators
(from 1.60 to 2.20 in the above studies) [48, 52]. Individ-
ual centres should therefore develop local thresholds
prior to clinical application.

Polysomnography
Polysomnography (Fig. 1c) allows for the objective iden-
tification of RBD by measuring EEG, eye movements
and muscle movement during sleep. Polysomnography-
confirmed RBD has a very high diagnostic specificity of
98% for synucleinopathies (PD, DLB or MSA) [54]. It
had an 84% sensitivity in post-mortem confirmed DLB
cases [55]. Sensitivity may be limited by the absence of
REM sleep in some polysomnography sessions.

Supportive biomarkers
Imaging
DLB is associated with less severe medial temporal lobe
atrophy on structural imaging when compared to AD
[56]. However, the sensitivity of this biomarker to detect
DLB is limited by the presence of AD pathology and as-
sociated medial temporal lobe atrophy in a significant
proportion of DLB cases [57]. Occipital hypoperfusion
and hypometabolism can also be seen on functional im-
aging, though FDG-PET is more effective in identifying
DLB than HMPAO-SPECT [58].

EEG
DLB is characterised by the presence of prominent pos-
terior slow wave activity [59–61] and temporal slow
wave activity [62]. The dominant EEG rhythm, normally
within the alpha range, is slowed toward pre-alpha/fast
theta and the variability of dominant frequency over
time is increased [60, 61, 63, 64]. Single centre studies
have reported good to excellent discrimination of DLB
from AD using quantification of EEG by a variety of
methods [59]; multicentre studies have been more
equivocal [60]. However, EEG may be an important bio-
marker for DLB in the future as changes can be detected
early in the disease course [65, 66].

Other biomarkers
Fluid biomarkers
CSF α-syn levels have variously been found to be in-
creased, decreased or unchanged in DLB [67]. The reasons
for these conflicting results may include contamination
(e.g. with blood) and differences in CSF acquisition, pro-
cessing and analysis [68]. The differentiation of DLB from
AD using CSF markers is further complicated by the pres-
ence of AD pathology in a significant proportion of DLB
cases as discussed above. At present, CSF measures can-
not discriminate between DLB and AD, but markers of
AD pathology may be useful in stratifying DLB patients
for future clinical trials [69].

Novel Biomarkers
The development of biomarkers for the diagnosis of
LBD such as DLB is an active area of research. Much of
this effort is focussed on the development of an α-syn
biomarker to complement the β-amyloid (Aβ) and tau
biomarkers that have been developed for AD. α-syn im-
aging ligands are currently in the pre-clinical stage [70].
α-syn biomarkers in other tissues such as skin [71], and
gut [72] are currently being investigated.

Genetics of DLB
Our present understanding of the genetic aetiology of
DLB is limited. Nevertheless, the available studies sug-
gest that genetic factors are as important in DLB as in
AD or PD. Positive family history of dementia and DLB
is a strong risk factor for DLB and siblings of affected in-
dividuals are at 2.3 fold risk of developing the disease
themselves [73, 74]. Nonetheless, DLB pedigrees with
highly penetrant alleles are rare and frequencies of gen-
etic variants in genes linked with DLB are poorly
understood.
Whilst families with DLB are rare, such families are in-

formative in providing genetic insight to the aetiology of
DLB. Most cases of suggested familial DLB show a pre-
dominant PD phenotype where many family members
have motor impairment as a presentation long before
onset of cognitive symptoms. Very few families with sug-
gested DLB show cognitive problems at presentation.
Consequently many families, while they do show cogni-
tive changes and dementia as part of the disease process,
do not have typical DLB meeting consensus criteria in
all family members. For example, individuals in families
with rare point mutation in the SNCA gene such as the
Contursi kindred [75, 76] often have profound dementia
as part of the disease process, although this is variable
and often a later symptom. Typically, cases with point
mutations in SNCA present as early onset PD [77–79].
Similarly, in the Waters-Miller-Muenter kindred with
triplication of SNCA [80], onset is typically motor im-
pairment with very few cases showing cognitive

Outeiro et al. Molecular Neurodegeneration            (2019) 14:5 Page 5 of 18



impairment at presentation and which can be described
as having DLB [81]. Families with SNCA duplication do
present clinically with certain features of DLB and show
typical pathology of neocortical α-syn deposition, but
again, dementia is often a later feature or not prominent
[82–87]. Therefore, SNCA mutations are not a common
finding in DLB [88].
Often families and individuals that have AD and causal

mutations in APP or PSEN1 along with concurrent pres-
ence of LBs, typically in the amygdala, have been de-
scribed as having DLB or LBD. While these cases fit
with a wider view of LBD, most do not meet consensus
clinical criteria for DLB [89].
There are however families which do meet clinical cri-

teria for DLB and where familial inheritance is shown.
In a description of two families with typical late onset
dementia showing typical DLB, analysis showed wide-
spread neocortical α-syn pathology with typically only
mild AD pathology, although a genetic defect was not
identified [90]. One family with dementia at onset and
later development of parkinsonism was reported where
age at onset of dementia was variable [91]. Neuropathol-
ogy of the proband showed widespread neocortical type
α-syn pathology and Braak stage V neurofibrillary tan-
gles fulfilling neuropathologic criteria for both DLB and
AD. Sequence analysis of this family has shown the pres-
ence of a P123H SNCB mutation near the C-terminus of
the protein, although no deposition of β-synuclein pro-
tein in brain tissue was observed [92].
Two unrelated families with suggested DLB have been

reported as carrying a mutation in the EIF4G gene [93]
known to be associated with increased risk of PD [94].
In these affected families, presentation was typically a
dementia syndrome with variable parkinsonian features
and pathology indicative of diffuse neocortical α-syn
deposition with only age related AD pathology. Sib-
lings with clinically and neuropathologically con-
firmed DLB have been reported [95, 96]. However, a
shared genetic mutation has not yet been identified
[97]. Individuals with DLB do show potentially causa-
tive mutations in certain autosomal dominant or re-
cessive genes associated with other neurodegenerative
disorders and individuals with mutations in PARK2,
CHMP2B, PSEN2, SQSTM1, EIF4G1, and GIGYF2
have been identified [97].
Although families with SNCA mutations do not show

clinical characteristics of DLB, association with the
SNCA locus is also strongly apparent in large studies of
sporadic DLB [98, 99]. Association with the SNCA gene
is not surprising due to the protein product α-syn being
present in LB and believed to be central in the patho-
physiology of DLB, PD and PDD. However, there seems
to be an interesting correlation, with the 3’ of the SNCA
gene being associated with the PD phenotype and the 5’

region linking with DLB. This may impact on the gene
expression and distribution of LB pathology in the brain.
Multiple studies dissecting the genetic component of

DLB have been published to date (for a comprehensive
review see [100, 101]), and the genetic landscape of DLB
mirrors that of the clinical and neuropathological over-
lap between DLB, PD and AD. To date, no high pene-
trance pathogenic mutations have been identified.
However, a number of common (>1% in population) and
rare genetic risk variants have been established. Genes
reported to be associated with DLB are SNCA, LRRK2,
PSEN1, PSEN2, APP, SNCB, MAPT, SCARB2, GBA and
APOE (Table 2). The finding of rare variants in AD
genes (PSEN1, PSEN2 and APP) in cases of dementia, as
previously noted, might be in part due to misdiagnosis,
particularly when the neuropathological assessment has
not been possible. The co-occurrence of LB pathology in
AD is common and may influence the disease phenotype
towards DLB [102]. The recent genome wide association
study confirmed several of the previously reported asso-
ciations (APOE, SNCA and GBA) and identified a new
probable locus CNTN1 [99], providing an unbiased and
the most comprehensive study of DLB genetics to date.
The strongest and most replicated genetic risk factors

for DLB are unequivocally APOE ε4 allele and Glucocer-
ebrosidase (GBA). APOE ε4 carriers often develop mixed
DLB-AD pathology. However, the ε4 allele is also
over-represented in pure DLB and PDD [103]. Multiple
studies have found an association of APOE ε4 with an
increased risk of DLB and, recently, a greater severity of
LB pathology in cases with APOE ε4 and low AD path-
ology has been reported [97, 104, 105]. These findings
imply an involvement of APOE in the mechanism of
pure LB pathology spread and not only an increased
risk of developing DLB, or Aβ associated DLB. Inter-
estingly, no association of APOE genotype is observed
for PD [106].
The association of GBA and DLB is well established

[107]. The GBA gene encodes a lysosomal enzyme in-
volved in the metabolism of complex glycosphingolipids
(OMIM 606463). DLB patients are 8 times more likely
to be carriers of GBA mutations than controls [107].
This risk is higher than that reported for PD [108],
and seems to associate with earlier age at onset, se-
verity and disease progression. Similar to APOE,
GBA is likely involved in the mechanism of LB path-
ology formation and/or spread, although the exact
cause of this predisposition is unknown. The recently
reported association of DLB with PD-linked SCARB2
emphasises the importance of lysosomal pathways in
DLB [98].
DLB appears to be genetically heterogeneous, with a

rare contribution of pathogenic causative mutations and
relatively common risk factors, which may explain why
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DLB is a relatively common disorder, but with a reduced
aggregation in families [97]. Our knowledge of DLB is
undoubtedly evolving and interrogation of currently
known risk factors will improve our understanding of
DLB pathophysiology.

Neuropathology of DLB
The majority of DLB cases show loss of pigmented,
dopaminergic neurons in the substantia nigra (SN), simi-
lar to that which is seen in PD (Fig. 2a-c). However, as
the main pathological changes in DLB affect the

Table 2 Summary of genetic variants associated with DLB. Single nucleotide polymorphisms (SNP), allele or haplotype are listed. For
SNPs rs numbers are provided and amino acid variant stated for exonic mutations

Gene SNP/allele or Haplotype Gene product References

APOE rs429358 (C130R) / E4 (allele) Apolipoprotein 4 [97–99, 105]

SNCA rs7681440 (intronic)
rs356182 (intronic)
rs104893875 (E46K)
rs104893877 (A53T)
Duplication

α-synuclein [77, 78, 82, 98, 99]

GBA Multiple mutations β-glucocerebrosidase [99, 107]

SCARB2 rs6812193 (intronic) Lysosomal integral membrane
protein-2

[98]

MAPT H1G (haplotype)
H2 (haplotype)
rs143624519 (A152T)
R221Qa

Microtubule-associated
protein tau

[206–208]

LRRK2 rs34637584 (G2019S) Leucine-rich Kinase-2 [209]

SNCB rs104893937 (P123H)
rs104893936 (V70M)

β-Synuclein [91, 92]

PSEN1 rs63749824 (A79V) Presenilin 1 [207]

PSEN2 rs140501902 (R71W)
rs63750048 (A85V)
V191Ea

rs63750110 (D439A)

Presenilin 2 [97, 207, 210]

GRN rs63750441 (C105R)
Multiple variants

Granulin [207, 211]

PARK2 rs148990138 (P37L)
A46Sa

rs191486604(G430D)
rs34424986 (R275W)

Parkin [97, 207]

PINK1 P138La

rs139226733 (M318L)
S499Ca

PTEN-induced kinase 1 [207]

APP rs63750264 (V717I)
Duplication

Amyloid precursor protein [89, 212]

GABRB3 rs1426210 (intronic) Gamma-aminobutyric acid
receptor subunit beta-3

[99]

BCL7C/STX1B rs897984 (intronic) B-cell CLL/lymphoma 7 protein
family member C / Syntaxin 1B

[99]

TREM2 rs143332484 (R62H) Triggering receptor expressed
on myeloid cells 2

[211]

CHMP2B rs63750818 (I29V) Charged multivesicular body
protein 2B

[97]

SQSTM1 rs200396166 (A33V)
P27La

Sequestosome [97]

EIF4G1 M1134Va Eukaryotic translation initiation
factor 4 gamma 1

[97]

GIGYF2 S1029Ca

S66Ta
GRB10 interacting GYF protein 2 [97]

a= no rs number assigned
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neocortex and limbic system, additional macroscopic
changes are observed in patients with DLB. Some struc-
tural changes are similar to those seen in AD, with wide-
spread cerebral atrophy being a feature of both AD and
DLB [109]. Unlike AD, there is a relative preservation of
the medial temporal lobe in DLB [110] (Fig. 2d-f ).
Microscopically, DLB is characterised by the abnormal

accumulation of α-syn in neuronal somata and processes
(i.e., LB and LN). Under pathological conditions, α-syn
undergoes a conformational change from random coil to
a cross-β sheet-rich structure [111, 112]. Electron mi-
croscopy has revealed that LB and LN are composed of
unbranched α-syn filaments with a typical length of
200-600nm and a width of 5-10nm [113]. Two types of
LB have been described: i) brainstem LB have an acido-
philic and argyrophilic core with a pale stained halo,
classically seen using H&E staining (Fig. 3a and b). Typ-
ically they are 8-30μm in diameter and predominantly
seen in pigmented neurons of the SN (Fig. 3c); ii) cor-
tical LB are eosinophilic, rounded, angular or reniform
structures without a halo and can be visualized using
α-syn immunohistochemistry, most notably in layers V
and VI of the neocortex (Fig. 3d-f ).
α-syn can undergo extensive posttranslational modifi-

cations (PTM), with phosphorylated, nitrated, and
SUMOylated forms of α-syn identified in LB [114–116].
Immunohistochemistry of α-syn phosphorylated at
serine 129 in DLB has revealed far more abundance of
α-syn than phosphorylation-independent antibodies and,

in addition to LB and LN, more threads and dot-like
structures (Lewy dots) are immunopositive for this
modified form of α-syn (Fig. 3f ) [117, 118]. Therefore, it
is tempting to speculate that cell types in individual
brain regions could accumulate differently modified
forms of α-syn, which may have implications in the de-
sign of disease modifying therapeutics, or in defining
previously unidentified discrete clinico-pathological sub-
types of DLB.
Based on current international neuropathological sta-

ging systems it is impossible to distinguish DLB from
PDD, which shares similar clinical, neurochemical and
morphological characteristics with DLB. However, im-
aging and post-mortem studies have suggested DLB cases
exhibit elevated limbic and striatal AD related patholo-
gies, and a lesser degree of dopaminergic cell loss com-
pared to PDD [119–121].
The common occurrence of additional pathologies in

DLB (e.g. AD related neurofibrillary tangles and Aβ pla-
ques (Fig. 3g and h), or fronto-temporal lobar degener-
ation related (FTLD)) is of current interest [122–127].
The presence of multiple pathological lesions has impli-
cations for disease prognosis, and has been shown to
alter the clinical phenotype; an elevated burden of
hyperphosphorylated tau has been associated with a
shorter survival time from the onset of dementia [128],
and a summated score of hyperphosphorylated tau, Aβ,
and α-syn is a better predictor of cognitive decline as
measured by MMSE compared to individual pathology

A B C

D E F

Fig. 2 Macroscopic features of DLB. Dopaminergic cell loss is observed in the substantia nigra of a DLB patient (black arrows) (a) compared to
AD (b) and control (c). In the same patients, atrophy of the medial temporal lobe is evident in AD, blue arrows (e) whilst it is relatively spared in
DLB (d), and controls (f). Both scale bars represent 1cm
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scores [129]. Intracellular inclusions of TDP-43 (Trans-
active response DNA-binding protein 43), the hallmark
pathology in FTLD, are also often observed in DLB, with
prevalence rates reported to be between 0-56% [127,
130, 131]. The distribution of TDP-43 pathology differs
in DLB compared to FTLD, with limbic structures af-
fected early in the degenerative process[127, 132]. The
presence of TDP-43 pathology has been shown to mod-
ify the clinical and radiological findings in neurodegener-
ative diseases, as patients with additional TDP-43
pathology are more cognitively impaired and display
greater hippocampal atrophy as seen on MRI compared
to patients lacking TDP-43 pathology[133, 134]. Con-
comitant cerebrovascular pathology is also commonly
observed, appearing in 50% of autopsy-confirmed DLB
cases[125]. Reduced cerebral blood flow and microvessel
density associated with decreased vascular endothelial
growth factor, maybe secondary to α-syn accumulation
in the occipital cortex[135], have been suggested. How-
ever, there is a still a gap in the knowledge of the exact
pathogenesis of CVP in DLB and the cumulative effect

on clinical phenotype. Unsurprisingly additional patholo-
gies may impede the clinicians’ ability to provide an ac-
curate diagnosis of DLB [24, 27, 128, 136–138].
There are several internationally recognised neuro-

pathological staging systems to assess the topographical
distribution of α-syn [11, 41, 139, 140] incorporating a
semi-quantitative grading of α-syn to assess the severity
in individual brain regions (Fig. 4). The majority of cases
can be classified in accordance with the suggested
rostral-caudal propagation of α-syn. However, other fac-
tors such as concomitant AD type pathology (often ob-
served in DLB and taken into account in the fourth
consensus report of the DLB Consortium [11]), or a gen-
etic susceptibility may influence α-syn aggregation, and
it is possible that certain brain regions may become
more vulnerable to further abnormal protein deposition.
α-syn deposits have also been detected in the peripheral
nervous system of patients with synucleinopathies[141,
142]. Further investigations highlighted a multi-organ
distribution of α-syn including the gastrointestinal, car-
diovascular, endocrine, and respiratory systems[143]. A

A D E

F

B

G

C
H

Fig. 3 Histopathological features of DLB. Midbrain section at the level of the superior colliculus stained with H&E where dopaminergic neurons in
the substantia nigra are vulnerable in DLB patients (a). Brainstem LBs are classically detected using H&E (b – black arrow) and frequently in the
pigmented neurons of the SN (c – white arrows). Cortical LB pathology (e.g. cingulate cortex) affects all layers of the neocortex, most notably
layers V and VI (d – red arrows). Cortical LBs and LNs can be visualised by α-syn immunohistochemistry (e - LB blue arrow head, LN blue arrow).
α-syn phosphorylated at serine 129 detects a greater abundance of LB pathology compared to staining with phosphorylation independent
antibodies (f - green arrows illustrate LBs, LNs, and Lewy dots). Alzheimer’s disease pathology is also a frequent finding in post-mortem tissue
from DLB patients including hyperphosphorylated tau tangles (g) and Aβ plaques (h). Of note photomicrographs E-H were taken from sequential
sections of the cingulate cortex of the same DLB patient. Abbreviations: SN, substantia nigra; WM, white matter; LB, Lewy body; LN, Lewy neurite;
α-syn, α-synuclein. Scale bar represents 0.5cm in A, 20μm in B and C, 500 μm D, and 50μm in E-H
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high prevalence of submandibular gland α-syn has been
reported in autopsied-confirmed cases, with 89% / 71%
of PD / DLB exhibiting α-syn positive lesions and α-syn
positivity has been reported in skin nerve fibres of DLB
patients [144]. However, the relation between peripheral
and central nervous system α-syn pathology is not fully
understood and warrants further investigation.
α-syn is assumed to spread throughout the brain in a

prion-like manner [145, 146] (see section "Molecular
Mechanisms"). The staging system proposed by Braak
and colleagues is based on the assumption that cerebral
α-syn pathology initially manifests in the medulla from
where it propagates, to the SN (at which stage clinical
symptoms of parkinsonism are evident), and further to
the neocortex (when clinical symptoms associated with
dementia emerge) [10]. However, in DLB, which initially
manifests with clinical dementia and only rarely with
extrapyramidal symptoms, this topographical spreading

pattern is not applicable and α-syn pathology may ini-
tially manifest in limbic and/or neocortical areas. In
cases with additional limbic and neocortical AD path-
ology, α-syn pathology may be aggravated as it is tempt-
ing to speculate that neurons already subjected to insult
by concomitant tau and/ or Aβ pathology could act as
trigger sites contributing to the aggregation and depos-
ition of α-syn in the neocortex. Evidence in support of
this hypothesis is provided in cases that neuropathologi-
cally fulfill criteria for DLB and AD, where the concur-
rent presence of hyperphosphorylated tau, Aβ, and
α-syn has been demonstrated to alter the topographical
distribution of pathological protein aggregates com-
pared to cases that do not harbor multiple lesions
within the same brain region [137]. The notion that
hyperphosphorylated tau, Aβ, and α-syn can influence
each other, promoting simultaneous aggregation, is
also supported by data from in vitro and transgenic

A B

C D

Fig. 4 Schematic diagrams illustrating the neuropathological staging systems for LBD. The Newcastle-McKeith criteria distinguishes between
brainstem predominant (regions affected including IX/X motor nucleus, locus coeruleus, and substantia nigra), limbic (transitional, regions include
amygdala, transentorhinal cortex, and cingulate cortex), and diffuse neocortical (frontal, temporal, parietal, lobes are affected). N.B. the most
recent consensus included the addition of olfactory only, and amygdala predominant stages [11] (a). Braak staging of α-syn deposition: Braak
stage 1, IX/X motor nucleus of the medulla oblongata, Braak stage 2, addition of lesions to the locus coeruleus, Braak stage 3, α-syn progresses to
the substantia nigra of the midbrain, Braak stage 4, α-syn lesions now detected in the transentorhinal region and CA2 of the hippocampus, Braak
stage 5, higher association of the neocortex are affected, and Braak stage 6, α-syn is visible in the premotor and motor regions [139] (b). Leverenz
and colleagues modified the original Newcastle-McKeith criteria to include cases that lack α-syn pathology in any other regions with the
exception of the amygdala, known as amygdala predominant LB disease [140] (c). Beach and colleagues proposed a unified staging system to
include cases that have α-syn confined to the olfactory bulb or bypass the brainstem to the limbic predominant pathway [41] (d)
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animal studies [147–151], however as this is yet to be
fully recapitulated in human tissue [152], future work
in this area will help to establish the presence of a
mechanistic link between multiple pathologies.
The relevance of Lewy pathology to the patho-mecha-

nisms responsible for eliciting the clinical phenotype is still
controversial. Numerous clinico-pathological studies have
failed to correlate LB density with disease duration, age of
onset, presence or absence of cognitive fluctuations, visual
hallucinations, delusions, recurrent falls, severity of parkin-
sonism or cognitive decline [153–156]. This is not entirely
surprising, as two of the core clinical features of DLB (fluc-
tuations in cognition and recurrent visual hallucinations)
are transient in nature. Therefore, other dynamic factors
(such as perhaps the levels of oligomeric species of α-syn,
or specific PTMs of α-syn) may be better predictors of clin-
ical features of DLB rather than overall LB density. Another
hypothesis is that formation of LB represents a neuropro-
tective mechanism in affected neurons [157, 158], which
may account for the lack of association in cognitive decline
with increasing LB burden.

Molecular mechanisms
Despite the controversy about the causal role of LB
pathology in LBD, the aggregation of α-syn is considered
a central process in all synucleinopathies. The aggrega-
tion of α-syn follows a two-step process, initiated by a
rate limiting nucleation phase in which soluble mono-
mers associate into transient intermediate oligomers,
which are built upon during the exponential elongation
phase, producing primary filaments that are in turn inte-
grated into fibrillary assembles [159]. This process con-
forms to a generalised scheme of protein fibrillation
established not only for α-syn [160] but also for other
proteins such as tau [161] or Aβ [162]. The conversion
between nucleation and elongation likely requires small
disordered oligomeric arrangements to adopt more
stable ordered configuration, resistant to degradation
and capable of promoting further fibrillation [163]. Each
step of fibrillation can be modulated by a number of fac-
tors including familial α-syn mutations [164–167] as
well as by a variety of PTMs, such as acetylation [168],
glycation [169], nitration [170], oxidation [171], phos-
phorylation [114, 172, 173], or truncation [174].
The initial lag phase of the primary nucleation can be

bypassed by the presence of “seed competent” fibrils
[175], resulting in a secondary nucleation event, which
likely facilitates the formation of new aggregates on the
surface of existing fibrils [176].
The apparent induction of de-novo fibrillation via the

uptake of transmitted α-syn arrangements may underlie
the prion-like spread of pathology initially observed as
the transmission of Lewy pathology to transplanted fetal
neurons [145, 177]. Additional studies demonstrated

α-syn aggregates may spread between neurons by se-
questering native α-syn thereby promoting aggregate
growth [178].
The suggestion that α-syn may spread like a prion is

an attractive hypothesis, as it may explain the stereo-
typed topography of Lewy pathology and clinical hetero-
geneity across LBD. Importantly, it has also considerable
translational potential. However, the regional spread of
α-syn does not appear to be solely determined by the
strength of anatomical connectivity or a ‘nearest neigh-
bor’ rule, indicating cell- or region- autonomous factors
may govern the development of LB pathology [179].
The lymphocyte activation gene 3 (LAG-3) binds

α-syn with high specificity and induces endocytosis from
the extracellular milieu, and its knockdown impedes the
cellular uptake of α-syn fibrils [180]. However, data from
our group on the distribution of LAG-3 in post-mortem
brain tissue indicate it is a pan-neuronal marker, and is
expressed by neurons that do not typically manifest LB
(unpublished data).
We have also recently shown that, similarly to Aβ,

α-syn interacts with the prion protein (PrP), triggering
a signaling cascade that culminates with neuronal
dysfunction [181].
Low expression of native α-syn has been described in

regions that do not develop LB pathology [182] and de-
creased cellular expression is prohibitive to intracellular
aggregation [183]. Therefore, low expression levels of
native α-syn within particular neuronal sub-types may
inhibit intracellular aggregation by limiting the initiation
nucleation phase.
Nevertheless, the consequences for those cells affected

depends on the configuration of the prion-like agent.
Somewhat surprisingly, the uptake of fibrils in vitro has
been associated with a protective outcome despite accel-
erated aggregation, and is in contrast to the induction of
apoptosis triggered upon the uptake of monomeric or
oligomeric preparations [184]. Accordingly, as men-
tioned above, it remains unclear if mature fibrils which
comprise LBs are the primary toxic agent of the disease.
Indeed, whilst the presence of cortical LBs is associated
with cognitive impairments [185], there is little evidence
to support a correlative relationship between LB burden
and the severity of dysfunction [154, 155, 186, 187]. This
disconnect is not only evident symptomatically, but also
at the cellular level, as key pathological changes are
often reported independent and/or assumed prior to LB
formation. These include synaptic dysfunction [188],
decreased neurofilament mRNA production [189], the
accumulation of axonal trafficked proteins [190], the
induction of apoptotic cascades [191] and neuronal
loss [192, 193].
Thus, despite the stable prominent nature of α-syn fi-

brils, it is likely that toxicity is instead driven by a pool
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of ill-defined heterogeneous oligomers. These oligomers
may dynamically shift in equilibrium, altering their prop-
erties and substrates, either acting as intermediates of
aggregation (on-pathway oligomers) or terminal assem-
blies (off-pathway oligomers) from which fibrillation is
no longer favorable [160]. Owing to their transient na-
ture, the investigation of oligomers has been somewhat
problematic. Nevertheless a variety of oligomers have
been defined by their structure, as observed in vitro.
These include annular [194] and globular [184] and/or
by their involvement in fibrillation [195]. A truncated
breakdown product from the incomplete lysosomal pro-
cessing of fibrils, so called “pα-syn*”, has recently been
demonstrated as highly toxic [196], highlighting the po-
tential for the retroactive production of toxins. Mechan-
istically, an array of cellular insults conducive to
dysfunction and death have been attributed to α-syn
oligomers; including membrane permeabilization [195,
197, 198], altered synaptic transmission and plasticity
[36, 169, 181], the breakdown of protein degradation
[199], as well as impairment of cellular organelles such as
mitochondria and endoplasmic reticulum [196, 200–202].
Despite our progress in understanding the molecular basis
of α-syn toxicity, it must be conceded that the generalised
terms “oligomers” and “fibrils” lacks the fidelity required
for the evaluation of physiological aggregates. Multiple
conformations of these assemblies exist, which dictates
their biological profile, and may account for specific
strains of aggregates resulting in differential clinical dis-
eases [203–205]. As such, the extrapolation or generalisa-
tion of outcomes observed from in vitro systems,
synthetic preparations or from differing protocols of bio-
logical extractions must be made with extreme caution.

Conclusions and outlook
DLB is a devastating disorder for which we lack effective
therapies. This is, at least partly, due to our lack of de-
tailed understanding of the molecular underpinnings of
the disease. Importantly, consensus guidelines have im-
proved the diagnosis and management of DLB, and the
1-year rule remains valid for distinguishing DLB from
PDD in the clinical setting [37]. However, we still need
additional guidelines (including better stratification of
patient cohorts) and outcome measures for future clin-
ical trials in DLB. In addition, we need to continue to
improve our understanding of genetic factors, of neuro-
pathological hallmarks, and of the underlying molecular
mechanisms.
At the molecular level, we need to identify factors that

may justify that the same proteins, such as α-syn, tau, or
Aβ, may behave differently and lead to distinct disease
manifestations. In this context, PTMs emerge as likely
suspects, as they could influence the behavior and accu-
mulation of the various proteins in different brain

regions. Given that PTMs can be either transient or irre-
versible, they may operate together or independently,
and may influence the formation of prion-like strains
that could then spread in different ways depending on
the disease.
Progress is challenging due to the considerable hetero-

geneity observed in DLB. The hope is that the know-
ledge acquired will enable us to define better biomarkers
for early diagnosis and for following disease progression,
and to identify novel targets for therapeutic intervention.
Ultimately, our collective goal as a community, should
be to distinguish DLB from other similar disorders, in
order to better assist patients and families not only with
disease management but also, and more importantly,
modifying, stopping, or altogether prevent this terrible
disease.
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