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The Value of
Neuroimaging in
Dementia Diagnosis

By Cyrus A. Raji, MD, PhD; Tammie L. S. Benzinger, MD, PhD

ABSTRACT

PURPOSE OF REVIEW: This article discusses neuroimaging in dementia
diagnosis, with a focus on new applications of MRI and positron emission
tomography (PET).

RECENT FINDINGS: Although the historical use of MRI in dementia diagnosis has
been supportive to exclude structural etiologies, recent innovations allow
for quantification of atrophy patterns that improve sensitivity for
supporting the diagnosis of dementia causes. Neuronuclear approaches
allow for localization of specific amyloid and tau neuropathology on PET
and are available for clinical use, in addition to dopamine transporter scans
in dementia with Lewy bodies and metabolic studies with fludeoxyglucose
PET (FDG-PET).

sUMMARY: Using computerized software programs for MRI analysis and
cross-sectional and longitudinal evaluations of hippocampal, ventricular,
and lobar volumes improves sensitivity in support of the diagnosis of
Alzheimer disease and frontotemporal dementia. MRI protocol
requirements for such quantification are three-dimensional T1-weighted
volumetric imaging protocols, which may need to be specifically
requested. Fluid-attenuated inversion recovery (FLAIR) and 3.0T
susceptibility-weighted imaging (SWI) sequences are useful for the
detection of white matter hyperintensities as well as microhemorrhages in
vascular dementia and cerebral amyloid angiopathy. PET studies for
amyloid and/or tau pathology can add additional specificity to the
diagnosis but currently remain largely inaccessible outside of research
settings because of prohibitive cost constraints in most of the world.
Dopamine transporter PET scans can help identify Lewy body dementia
and are thus of potential clinical value.

INTRODUCTION
euroimaging traditionally has played a focused role in the diagnosis
of dementia. For Alzheimer disease (AD), the most common cause
of dementia worldwide," neuroimaging has historically been used to
rule out structural causes of dementia,” including large strokes,
brain tumors, infectious causes, and, in rare cases, reversible
vascular causes such as dural arteriovenous fistulas.*> When using neuroimaging
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in dementia, several points should be emphasized. First, MRI is a widely available
modality, with a total 40 million MRI scans done in the United States in 20196’7
across almost 12,000 MRI scanners and all bodily organs compared to a total

2 million positron emission tomography (PET) scans® for all indications across
about 2500 PET scanners. Also, the cost of an MRI is much less than the cost of a
PET scan; in the United States, a noncontrast brain MRI costs as little as $437
compared to about $2700 for a brain fludeoxyglucose PET (FDG-PET) scan.’ For
perspective, the cost of an MRI in the Netherlands is $190,"° further highlighting
the relatively low cost of MRI internationally. Also, brain MRI is the first-line
neuroimaging modality recommended in the imaging guidelines for dementia as
published by the American Academy of Neurology,” National Institute on
Aging," and American College of Radiology™; CT also can be recommended,
especially when MRI cannot be accomplished (eg, when a patient has a
pacemaker). These recommendations are mirrored in the American College of
Radiology Appropriateness Criteria, which recommend CT of the head or MRI
without contrast. However, because head CT has lower anatomic resolution than
MR, particularly for regional quantification, it is reduced in sensitivity for
detecting atrophy in neurodegenerative disease and is exceeded by MRI for
detecting vascular disease.™* Based on a combination of patient access, financial
costs, anatomic resolution, and formal society guidelines, brain MRI is the main
focus of this article, with additional commentary on the role of FDG-PET in
complex cases and of amyloid and tau PET in clinical trials and emerging
therapeutic strategies for AD and related dementias.

MRI PROTOCOL CONSIDERATIONS
The minimum elements of a dedicated dementia MRI protocol should include a
high-resolution T1-weighted imaging sequence to allow for quantitative analysis
of specific brain atrophy patterns. To evaluate for vascular pathology, the
protocol should also include diffusion-weighted MRI sequences to detect acute
infarction, as ongoing infarcts may present as sudden memory loss.”
T2-weighted and fluid-attenuated inversion recovery (FLAIR) sequences
allow for assessment of white matter disease, whereas blood-sensitive
susceptibility-weighted sequences enable evaluation for cerebral
microhemorrhages.’® These microhemorrhages are caused by structural
abnormalities of small cerebral blood vessels that generally relate to cerebral
amyloid angiopathy (CAA) or to hypertensive vasculopathy in dementia
populations. Additional sequences may also be helpful for clinical evaluation or
research but may be difficult to use in older individuals as longer scan times may
not be tolerated, leading to increased motion or premature cessation of the
imaging study. For volumetric acquisitions, the three-dimensional T1-weighted
scan is used; this scan has different designations but is most commonly called
either a magnetization prepared rapid gradient echo (MPRAGE) sequence or a
spoiled gradient recalled acquisition (SPGR) sequence, depending on
manufacturer. Standardized protocols are available for download from the
Alzheimer’s Disease Neuroimaging Initiative (adni.loni.usc.edu/methods/
documents/mri-protocols) and National Institute on Aging (scan.naccdata.org).
Use of gadolinium contrast is not recommended for dementia evaluation
unless clinical suspicion exists of a neoplastic, infectious, or inflammatory
process. The most common field strengths of scanners are 1.5T and 3.0T, with
lower field strengths occasionally encountered on open MRI machines. In
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general, patients should be scanned on either 1.5T or 3.0T machines as either field
strength can detect brain atrophy related to neurodegenerative disease.”
However, 3.0T scanners are preferred, when available, as they allow for the
acquisition of sequences such as susceptibility-weighted imaging (SWI) that
optimize evaluation of hemorrhage. When considering longitudinal analysis in
patients to track brain volume changes, it is important to image on scanners that
have the same field strength and vendor.

POTENTIAL PITFALLS

When considering neuroimaging for cognitive decline, several caveats should be
considered. Appropriate imaging should include correct sequences as detailed
previously, such as three-dimensional T1-weighted sequences for volumetric
quantification as well as susceptibility-sensitive sequences to detect
microhemorrhages, particularly for evaluating for CAA or amyloid-related
imaging abnormalities (ARIA). Postcontrast MRI may be frequently ordered for
evaluation of rapidly progressive cognitive decline, with potential etiologies that
may include neoplastic, infectious, toxic-metabolic, or autoimmune disorders."®
However, the most common type of MRI recommended is without IV contrast,
according to the American College of Radiology guidelines.” Thus, a common
pitfall to avoid when ordering imaging for dementia is the use of IV contrast
unless a suspected etiology may warrant the use of contrast, such as those for
rapidly progressive dementias. Discordance between image interpretation and
clinical evaluation can be minimized by (1) evaluation of a chronically
progressive versus rapidly progressive development of dementia, (2) the
presence of fluid biomarkers, and (3) understanding of potential comorbidities
that may occur with common dementias such as AD and vascular disease.
Clinical communication between neurologists and neuroradiologists remain
important in facilitating the diagnostic process.

MRI SAFETY CONSIDERATIONS

When scanning people in late life, the main consideration for neurologists

and neuroradiologists is the safety of scanning with the various medical devices a
patient may have. The main example found in clinical practice is a pacemaker,
but the variety of devices has expanded and includes cochlear implants and
orthopedic hardware. Thus, when considering whether to request a brain MRI in
a person with any medical hardware, it is essential that the neurologist consult
with the neuroradiologist about the device and its MRI compatibility. The
neuroradiologist then must consider several factors. First, if no documentation
exists on the MRI compatibility or incompatibility of the device, MRI should not
be performed because the risk is unknown. If prior medical documentation is
available noting that the device requires no specific conditions for MRI, the scan
can be performed. If specific conditions are documented by the manufacturer,
the conditions can be viewed on a central common website (mrisafety.com),
which provides ratings of MRI safety as defined by the US Food and Drug
Administration (FDA): MRI Safe, MRI Unsafe, and MRI Conditional. Patients
with devices rated MRI Unsafe should not undergo MRI examinations.

Patients with devices designated as MRI Safe can be scanned. Patients with
devices rated as MRI Conditional devices may be scanned only if specific
conditions are met. MRI Conditional devices are further rated as Conditional 1
through Conditional 8, with specific considerations noted for each rating
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(mrisafety.com/Terminology.html). With some MRI safety policies, MRI
Conditional 4 and MRI Conditional 5 ratings may warrant scanning done by a
certified magnetic resonance safety officer as these conditions are particularly
manufacturer specific. Such cases are typically urgent or emergent clinical
situations in which the risks of the scan must be weighed against the clinical
benefit. Clinical collaboration between the neurologist and neuroradiologist is
essential in the decision-making process. In some circumstances, the
neuroradiologist may also consult with an MRI physicist to further determine
MRI safety. Neurologists should familiarize themselves with the MRI safety
categories and related documentation of devices to best inform their
neuroradiology MRI safety consultations.

CHRONICALLY PROGRESSIVE AND RAPIDLY PROGRESSIVE DEMENTIAS
When evaluating brain MRIs from a neuroradiologic perspective, is it
important to consider whether the dementia under evaluation is chronically
progressive or rapidly progressive. Chronically progressive dementias, such

as AD, frontotemporal dementia (FTD), and dementia with Lewy bodies
(DLB), typically develop insidiously over months to years.” Vascular dementia
may have an acute onset commensurate with the occurrence of stroke and
then not progress until and unless additional vascular insults occur. In contrast,
the rapidly progressive dementias typically develop over weeks to months.
Rapidly progressive dementias can have a wide variety of causes, ranging from
vascular to toxic/metabolic, infectious, and systemic causes; heavy metal
poisoning; autoimmune diseases; and neoplastic processes. This article focuses
on chronically progressive dementias and the use of quantitative MRI
volumetrics as a practical clinical aid to dementia diagnosis.

APPLICATION OF NEUROIMAGING TO DEMENTIA
This section will overview the use of volumetric quantification techniques on
brain MRI for dementia.

Brain Atrophy Quantification With MRI Volumetrics
AD is the most common cause of dementia, with longitudinal brain MRI
revealing progressive atrophy in the hippocampal, temporal, and parietal
regions. Jack and colleagues®® determined that the normal age-related annualized
hippocampal atrophy rate is 1.73% from a cubic millimeter unit of measurement
of hippocampal volume. With early symptomatic AD (eg, mild cognitive
impairment due to AD),* this annual rate is increased to 2.5% and rises with
greater AD dementia severity.*>** Another study by Fotenos and colleagues™
noted whole-brain atrophy rates of 0.45% in cognitively normal individuals and
0.98% per year in individuals with AD. Brain atrophy begins around age 30 and
progresses throughout the lifespan.** From 30 to 80 years of age, humans
experience frontal lobe volume loss of 14% and hippocampal volume loss of 13%.%
The same study found that white matter volume in particular shrinks, with a 24%
loss of volume in the frontal lobe and the majority of this loss occurring after the
age of 70.” However it is important to note that many so-called normative older
cohorts included individuals with preclinical AD, so truly normal aging may not be
affected as greatly by atrophy as the literature might indicate.

Tracking these structural changes is enabled by volumetric quantification on
brain MRI. Although this can be done with research software programs,*®>*
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dementia under evaluation is
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rapidly progressive.
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FDA-cleared software programs also exist and are shown alongside research
software programs in TABLE 7-1*4°.#*

Automated volumetric analysis programs, whether FDA cleared or research
based, are readily available both nationally and globally and are increasingly
being used. Many are accessible through Health Insurance Portability and
Accountability Act (HIPAA)—compliant web portals, increasing the range
of access. The average turnaround time for FDA-cleared programs ranges
from 10 minutes on a web portal to contemporaneous with images as they
are acquired on MRI scanners. One FDA-cleared program processed 115,000
clinical brain MRIs from 2006 to 2016.** Additionally, the applications
demonstrated in peer-reviewed literature have expanded from dementia® to
multiple sclerosis,*® traumatic brain injury,** and mesial temporal sclerosis.*
The cost of such programs is modest.” An ordering neurologist can specify
a request for volumetric quantification in their ordering comments if the
electronic medical record lacks this option. Automated volumetrics agree
with manual volumetry, with one study of an FDA-cleared program showing
average Dice similarity coefficients (a similarity metric) of between 86% and
88% in hippocampal measurements across cognitively normal controls,
prodromal AD, and AD dementia in the Alzheimer Disease Neuroimaging
Initiative (CASE 7-1).>° Automated volumetry demonstrates a high degree
of accuracy in detecting brain atrophy related to a clinical diagnosis of
dementia, with another FDA-cleared volumetric program showing
accuracy of 99%.>* Additionally, automated volumetry can detect both
cross-sectional and longitudinal atrophy that can be missed on conventional
visual reads (CASE 7-2).*®*° It is important to note that hippocampal
volume loss is not specific for AD as it has been observed in other

TABLE 7-1

804

Software Programs Available for Automated Volumetric Analysis

US Food and Drug Administration (FDA)-cleared magnetic resonance volumetric software

NeuroQuant (cortechs.ai/products/neuroquant)?®
Neuroreader (brainreader.net)*°
Icometrix (icometrix.com)®

Quantib (quantib.com)®?

CorticoMetrics (corticometrics.com)®

* ¢ 6 O o o

Siemens Brain Morphometry (magnetomworld.siemens-healthineers.com/clinical-corner/
clinical-talks/brain-morphometry.html)**

Research magnetic resonance volumetric software
FreeSurfer (surfer.nmr.mgh.harvard.edu)®
Voxel-based morphometry (dbm.neuro.uni-jena.de)*®
volBrain (volbrain.upv.es)*”

Brain MRICloud (mricloud.org)*®

FastSurfer (deep-mi.org/research/fastsurfer)*®

FSL (fsl.fmrib.ox.ac.uk/fsl/fslwiki)*°

® ¢ 6 O o o
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conditions, including in relation to traumatic brain injury,” mesial
temporal sclerosis,* and hippocampal sclerosis of aging.”* Normal
volumetric findings on brain MRI, however, do not exclude AD dementia
(CASE 7-3).

Brain atrophy related to neurodegenerative dementing diseases is
progressive in nature and worsens over time. By this rationale, brain volumes
that are technically within a “normal” range when compared to a normal
database, but worsening over time, may suggest progressive atrophy related
to neurodegeneration even if still within the “normal” range (FIGURE 7-5).

In other words, a decline in regional brain volume even within a statistically
normal comparative range can be compatible with progressive brain atrophy in
the setting of neurodegenerative disease.

In summary, longitudinal brain quantification in the workup of dementia can
improve both the sensitivity of the workup and confidence in support of the
underlying diagnosis. Brain atrophy can be detected with intervals as short as
6 months,* but the majority of studies track atrophy over 1 year.>*

Molecular Imaging Studies in Dementia

The relatively recent amyloid, tau, neurodegeneration (A/T/N) framework
for AD research may also offer some insights into the diagnostic imaging
evaluation of dementia. In this framework, A stands for the amyloid found
in the amyloid plaques of AD that can be identified with amyloid PET
and/or CSF or plasma biomarker evaluations. T stands for tau identified

in neurofibrillary tangles that can also be noted on tau PET and/or fluid
biomarker sampling. Although tau PET agents, including flortaucipir F 18,
have been important in ongoing investigations of AD pathology,’®> the
clinical use of tau PET scans has yet to be defined. Currently, tau PET holds
promise as a surrogate marker for monitoring drug treatment response in
clinical trials. It also can potentially identify different AD clinical phenotypes.>®
Although first-generation tau tracers in some instances were limited by
off-target binding, newer tracers avoid these pitfalls and can potentially
track different patterns of tau deposition in other neurodegenerative diseases,
such as corticobasal degeneration and progressive supranuclear palsy.”

N stands for neurodegeneration, the correlates of which on imaging include
brain atrophy on MRI or glucose hypometabolism on FDG-PET.®° The
A/T/N framework is being examined in research settings, but in clinical
practice, physicians caring for patients with dementia are most likely to
monitor the N component using brain MRI and/or FDG-PET. Brain MRI
characterizes the anatomic specificity and extent of neurodegeneration.

The current FDA-cleared amyloid PET tracers are florbetapir, florbetaben,
and flutemetamol. These tracers have similar standards of visual interpretation,
with comparable sensitivity for detecting amyloid deposition ranging between
87.2% and 91.7%.5" Each of these tracers can be requested by a practicing
neurologist based on their FDA clearance. However, given the lack of coverage
by the Centers for Medicare & Medicaid Services, the clinical availability of both
amyloid and tau PET tracers is limited by individual patient ability to pay. The
cost of an amyloid PET scan can be prohibitive.’

Standard clinical interpretations of such scans are focused on grayscale
images, and thus color scales are not required for this purpose but are used for
one of the current FDA-cleared tracers, flutemetamol F 18, to provide an

CONTINUUMJOURNAL.COM

KEY POINTS

@ Brain atrophy related to
neurodegenerative
dementing diseases is
progressive in nature and
worsens over time.

® A decline in regional brain
volume even within a
statistically normal
comparative range can be
compatible with progressive
brain atrophy in the setting
of neurodegenerative
disease.

® The relatively recent
amyloid, tau,
neurodegeneration (A/T/N)
framework for AD research
may offer some insights into
the diagnostic imaging
evaluation of dementia.

® The amyloid, tau,
neurodegeneration (A/T/N)
framework is being
examined in research
settings, but in clinical
practice, physicians caring
for patients with dementia
are most likely to monitor
the N (neurodegeneration)
component using brain MRI
and/or fludeoxyglucose
positron emission
tomography (FDG-PET).

® The current US Food and
Drug Administration—
cleared amyloid positron
emission tomography
tracers are florbetapir,
florbetaben, and
flutemetamol.

805

Copyright © American Academy of Neurology. Unauthorized reproduction of this article is prohibited.



NEUROIMAGING IN DEMENTIA DIAGNOSIS

CASE 7-1

COMMENT

An 80-year-old woman presented with a 2-year history of insidious-onset
memory loss, perseverative behaviors, inattention, and irritability. The
patient was a retired corporate officer. Her medical history was notable
only for hypertension. Her blood pressure at time of evaluation was 171/
88 mm Hg. Her Clinical Dementia Rating (CDR)*® was 0.5, indicating very
mild dementia.

The diagnostic considerations included Alzheimer disease (AD) as well
as small vessel disease and vascular dementia, although the insidious
course argued against a vascular cause. Brain MRI was obtained, which
showed mild-appearing hippocampal volume loss (FIGURE 7-14), minimal
T2/fluid-attenuated inversion recovery (FLAIR) hyperintensities
(FicurEe 7-18), and no findings of basal ganglia/thalamic microbleeds from
hypertension or cortical microbleeds suggestive of cerebral amyloid
angiopathy (FIGURE 7-1c). Volumetric brain MRI quantification showed
abnormally low hippocampal volumes (FIGURES 7-2A and 7-28), higher
lateral ventricular volumes (FIGURE 7-2c), and normal range parietal lobe
thickness (FIGURE 7-2D).

The clinical interpretation of the patient’s MRI precluded hypertensive
vascular disease as the primary factor behind the patient’s dementia given
the lack of white matter hyperintensities or microbleeds to indicate end
organ damage from chronic vascular disease. The mild hippocampal
volume loss suggested AD. Hippocampal volumes have been identified as
17% smaller in people who subsequently develop AD dementia compared
with people who remain cognitively normal 2 to 3 years later.*” FIGURE 7-2
shows that the quantified hippocampal volumes in this patient are at the
first percentile when compared to a normal database, signifying more than
2 standard deviations from the mean. Note that the figure shows
ventricular and parietal lobe volumes within 2 standard deviations of the
mean of the normal database. Temporal lobe cortical thickness, not shown,
was between 1 and 2 standard deviations from the mean. Thus, the
guantified low hippocampal volumes were the most sensitive metrics of
brain abnormality in this patient with mild dementia and the clinical read of
hippocampal atrophy. In the context of the hippocampal findings, the
lateral ventricular volumes and parietal lobe thickness, although technically
within 2 standard deviations from the mean, may also be abnormal. These
findings further illustrate added value of quantified brain volumes with
statistical comparisons to normal data.
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FIGURE 7-1

Imaging of the patient in cAse 7-1. A, Coronal T1-weighted MRI shows mild-appearing
hippocampal volume loss. B, Axial fluid-attenuated inversion recovery (FLAIR) MRI shows
mild small vessel ischemic disease. C, Axial susceptibility-weighted imaging (SWI) MRI shows
lack of cerebral microbleeds.
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FIGURE 7-2

Volumetric MRI findings for the patient in CASE 7-1. Volumetric brain MRI quantification
findings show abnormally low left (A) and right (B) hippocampal volumes and higher lateral
ventricular volumes (C) and normal range parietal lobe thickness (D).
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CASE 7-2

A 69-year-old man presented with a 2-year history of the gradual onset
and progression of memory loss and behavioral changes. He no longer
recognized people he previously knew well, purchased unneeded items,
and had experienced personality changes.

Initial neuroimaging evaluation done at this initial visit after 2 years of
progressive decline showed brain volumes within 2 standard deviations
of the mean, hence within the normal range. However, follow-up
volumetric quantification 2 years later revealed volumetric declines in
frontal and temporal lobe thickness and in hippocampal volume at rates
higher than expected in normal aging (FIGURE 7-3); he was ultimately
clinically diagnosed with frontotemporal dementia.

Dementia Tl

colour
“ SuperNorm
+ Patient
fill
1 Std Dev

linetype

2.4, 18 Percentile
; 2 Std Dev

=
2.38, 15 Percentile

Patient Change in Volume: -0.0114 per year
Norm Group Change in Volume: -0.0024 per year

70 80 90 100
Age

>

Thickness (mm)
s

(9

40

50

Average Left F

2.49, 37 Percentile

Dementia Tl

colour
“ SuperNorm
© Patient
fill
1 Std Dev
linetype
—— == 2 Std Dev
2.41, 19 Percentile

Patlent Change in Volume: -0.0396 per year
Norm Group Change in Volume: -0.0043 per year

60 80 a0 100

70
Age

2500

Normalized Volume (mm®)
a y

40

Left Hippocampal Volume

colour
SuperNorm
4717.35, 98 Percentile = Palient
. fill
4526.78, 96 Percentile 1 Std Dev
linetype
% . 2 Std Dev
Patient Change in Volume: -85.2875 per year
Norm Group Change in Volume: -31.2717 per yeal

7500

5000

2500~

Normalized Volume (mm®;

50

=y
- 462681, 94 Percentils

Right Hippocampal Volume

colour
“ SuperNorm
@ Palient
fill
1 Std Dev

e U linetype
2 Std Dev

4862.46, 97 Percentile

Patient Change in Volume: 117 per year
Norm Group Change in Volume: -23 per year

60 70
Age

COMMENT

FIGURE 7-3

Volumetric brain MRI quantification findings of the patient in case 7-2. The top two
panels show longitudinally reduced frontotemporal thickness on both the right (A) and left
(B) sides. The bottom panels (C, D) show longitudinally decreased hippocampal volumes.

This case emphasizes the utility of longitudinal imaging in frontotemporal
dementia as well as Alzheimer disease dementia by showing the
progressive loss of frontal and temporal lobe thickness. This case also
highlights the additional sensitivity conveyed with cortical thickness

measurements in addition to volumes.
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decline, including repetition of questions and stories, forgetting details,
omitting ingredients from a recipe, and increasingly low tolerance to
stress.

Brain MRI volumetric quantifications, including hippocampal volumes,
were all in the normal range of within 2 standard deviations from the
control mean. However, a brain amyloid positron emission tomography
(PET) obtained as part of a research study showed brain amyloidosis
consistent with underlying AD pathology (FIGURE 7-4), with cortical®?
florbetapir F 18 uptake in the gray matter distributed out to the periphery
with concurrent loss of gray-white matter contrast.
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FIGURE 7-4

Example of a positive brain amyloid positron emission tomography (PET) scan in a person
with normal range quantified brain volumes, including hippocampal volumes. The darker
shades of gray areas show increased amyloid uptake in supratentorial regions; gray areas in
the cerebellum show the comparative lack of amyloid binding.

A 67-year-old woman presented with a 1-year history of cognitive CASE 7-3

In this case, the patient had normal-range derived MRI brain volumes, COMMENT
including in the hippocampus. However, further PET imaging revealed
amyloid-positive binding indicative of underlying Alzheimer pathology.
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FIGURE 7-5

A 75-year-old man presented with several years of subjective memory symptoms but no
diagnosed dementia. The longitudinal volumetric findings in this individual showed increased
hippocampal volume loss over a 2-year period beyond what is expected for normal aging,
suggesting a dementia neurodegenerative process.

improved ability to visually identify the progression of low to high intensity.”*
Although visual analysis is the current standard in amyloid PET image
interpretation, standardized uptake value ratios (SUVRs) with a reference region
such as the cerebellum can generate high diagnostic accuracy. The cerebellum is the
most commonly used reference region for SUVR calculations because of the very
low to no amyloid-B in the cerebellar gray matter and white matter, respectively.®
One study found using SUVR with the cerebellum as a reference region generated
an area under the curve of 93.5%.% Use of machine learning further improves upon
this accuracy.** The IDEAS (Imaging Dementia—Evidence for Amyloid Scanning)
study showed that use of amyloid PET changed management in more than 60%
of cases with very mild and mild dementia, more than twice what the study
predicted.®

Brain FDG-PET images show glucose metabolism, and hypometabolism
is frequently seen in dementia.®® This method may be useful in differentiating
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between FTD and AD because of the characteristic temporoparietal
hypometabolism in AD compared to the predominant frontal hypometabolism in
behavioral variant FTD.® This distinction has high diagnostic utility, with one
study showing sensitivity of 86% and specificity of 97.6% in evaluating 31
individuals with pathologically confirmed AD and 14 individuals with FTD.*®
The distribution of FDG-PET changes can suggest other neurodegenerative
conditions, especially when postprocessed with z score maps (FIGURE 7-6).57
Such processing can be done with FDA-cleared software tailored for FDG-PET
brain analysis®® in addition to visual reads. As the imaging abnormalities seen on
FDG-PET can substantially overlap across different types of neurodegeneration,
the use of more specific amyloid and tau biomarker studies will remain important
to utilize as clinical practice evolves.

Much interest exists in the development of fluid and, in particular, plasma
biomarkers for the detection of AD,*7° which have been shown to predict brain
amyloidosis on PET.”* Such work is essential as these tests will be needed to
demonstrate biomarker positivity in individuals with suspected AD who are
being evaluated for possible anti-amyloid therapy and have substantially lower
costs than PET. Although amyloid and tau PET demonstrate the full anatomic
distribution of these biomarkers, patient access to PET scanners is not
ubiquitous. Thus, plasma biomarkers will remain important for maximizing this
access to determine eligibility for anti-amyloid therapy.

FIGURE 7-6

Differential patterns of hypometabolism on fludeoxyglucose positron emission
tomography (FDG-PET) z score maps in neurodegenerative disease with temporal parietal
hypometabolism in Alzheimer disease (AD), increased occipital hypometabolism in
dementia with Lewy bodies (DLB), frontal dominant hypometabolism in frontotemporal
dementia (FTD), asymmetry in corticobasal degeneration (CBD), and posterior dominant
cortical hypometabolism in posterior cortical atrophy (PCA). The blue and purple colors
denote areas of the FDG-PET scan that are lower than -2 standard deviations from the
mean of the control comparison population.

Reprinted with permission from Brown RKJ, et al, RadioGraphics.®” © 2014 Radiological Society of North
America.
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White Matter Hyperintensities

The role of chronic hypertensive vascular disease as an etiologic factor for
cognitive decline is best evaluated on FLAIR images, which can demonstrate
abnormally high signal in the white matter known as white matter
hyperintensities or white matter lesions.”” The distribution of such lesions in
the setting of chronic small vessel ischemic changes is typically in periventricular
or subcortical regions or in the deep white matter, and the location of these
lesions in older people supports the underlying small vessel ischemic etiology”?
and can independently predict brain atrophy.”* On histopathology, these
lesions signify underlying vascular disease, including cerebral infarcts, lacunes,
and subcortical arteriosclerotic leukoencephalopathy.” Grading the magnitude
of such changes as mild, moderate, or severe is done with the Fazekas scale,””
which provides a simple visual scale of white matter lesion severity (FIGURE 7-7).
As the severity of white matter disease increases, so too does the confluence of
the lesions, mainly in a periventricular distribution. Additional lesions in
subcortical and deep white matter would demonstrate an increasingly cloudlike
appearance.

Cerebral Microbleeds

Cerebral microbleeds manifest as focal round areas of reduced signal on
susceptibility-sensitive sequences, such as SWI on 3.0T and gradient recalled echo
(GRE) on 1.5T systems. Three or more of these lesions confer a higher risk of
cognitive impairment.”® However, cerebral microbleeds have several etiologies,
and these different causes can be suggested by the spatial distribution of these
lesions (FIGURE 7-8).”” Differentiating between these findings is important as

the bleeding risk as evidenced by the development of lobar hemorrhage in

CAA is high, ranging from 3.9% to more than 11% with the presence of cortical
superficial siderosis (deposition of chronic blood product over the cerebral
convexities).”® Cerebral microbleeds are abnormal accumulations of hemosiderin
in blood vessels, and with hypertension this is presumed to be due to endothelial
cell damage and related inflammation.”” This commonly happens in the basal
ganglia because of the vulnerability of the supplying medial lenticulostriate
arteries to chronic hypertension.”” With traumatic brain injury, this is

Moderate Severe

FIGURE 7-7
Fazekas white matter grade (mild, moderate, severe) for small vessel ischemic disease.
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FIGURE 7-8

Examples of different etiologies of cerebral microbleeds suggested by spatial
distribution. Axial susceptibility-weighted imaging (SWI) shows the typical location of
hypertensive microbleeds in the bilateral thalamus and basal ganglia (A), bilateral
cortically distributed microbleeds common in cerebral amyloid angiopathy, often further
characterized by large lobar microhemorrhage (not shown) in 8.5% of patients with
cerebral amyloid angiopathy®? (B), and three asymmetric left temporal lobe microbleeds
in a patient with a history of traumatic brain injury (C, arrows).

secondary to diffuse axonal injury in which hemosiderin-filled macrophages
next to small vessels are related to prior extravasation of blood®; this frequently
asymmetrically affects frontal and temporal lobes as these are frequent areas of
injury.®* In CAA, cerebral microhemorrhages relate to amyloid-§ deposition and
insoluble amyloid fibrils within the walls of leptomeningeal and

cortical arterioles.®

Brain MRI in Amyloid-related Imaging Abnormalities

Brain MRI is essential for the recently approved anti-amyloid therapy

with aducanumab to monitor for the complications of amyloid-related
imaging abnormalities with hemorrhage and superficial siderosis (ARIA-H)
or with vasogenic edema with or without sulcal effusion (ARIA-E).* These
findings are collectively seen in up to 35% of individuals treated with
aducanumab, which as of January 11, 2022, has been approved by the Centers for
Medicare & Medicaid Services for coverage with evidence development.5+%
Monitoring for these complications in the clinical trials for aducanumab
occurred at baseline or within 1 year of starting treatment, after the seventh
infusion (first dose of 10 mg/kg), and after the twelfth infusion (sixth dose
of 10 mg/kg). The ARIA classification criteria from the aducanumab FDA
label are listed in TABLE 7-2.%° FIGURE 7-9 shows examples of ARIA-H and
ARIA-E.

Dementia With Lewy Bodies

DLB refers to a syndrome characterized neuropathologically by the abnormal
aggregation of a-synuclein,” an abundant 140-amino acid neuronal protein
seen mainly in the neuronal presynaptic terminal. Clinically it is identified by
progressive cognitive decline that often involves executive and visuospatial
dysfunction.® On imaging, a biomarker suggestive of DLB is ioflupane I 123,
which labels the dopamine transporter in the nigrostriatal dopaminergic pathway
on PET or single-photon emission computed tomography (SPECT). Reduced
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binding of ioflupane I 123 in the basal ganglia on a dopamine transporter scan
reflects abnormally low presynaptic dopamine. This finding, in turn, relates

to loss of dopaminergic neurons that can occur in DLB,® Parkinson disease,*®
multiple system atrophy,” progressive supranuclear palsy,” and corticobasal
degeneration.”” Given the overlapping findings, an abnormal ioflupane I 123
dopamine transporter scan does not establish a specific diagnosis of DLB but
can be an indicative biomarker when other clinical information is supportive
of the diagnosis. One systematic review found that dopamine transporter scans
change management in 54% of cases and resulted in a change in diagnosis in 31% of
cases.” FIGURE 7-10 shows examples of normal and abnormal dopamine
transporter scans.

Normal Pressure Hydrocephalus
Normal pressure hydrocephalus (NPH), classically consisting of the clinical
triad of gait dysfunction, urinary incontinence, and dementia, is a differential
diagnostic consideration in some patients with dementia. MRI findings
suggestive of NPH include ventriculomegaly out of proportion to sulcal
dilatation (FIGURE 7-11A), as evidenced by a reduced callosal angle®*
(FIGURE 7-11B) and tenting of the lateral ventricle (FIGURE 7-11C) with a CSF
flow void in the cerebral aqueduct (FIGURE 7-11D). The callosal angle is drawn
at the posterior commissure on coronal T1-weighted MRIs; it is typically
abnormal in the setting of NPH when it is between 50 and 8o degrees and
typically normal when it is between 100 and 120 degrees.’* Tenting of the
lateral ventricle is seen from the communicating hydrocephalus of NPH,
but the finding is not exclusive to this disorder. This is also true with increased
CSF flow manifesting as a cerebral aqueduct flow void.

Although the clinical management of NPH does not always yield positive
outcomes and ventricular shunting can have complication rates of up to 35%,”

TABLE 7-2 ARIA Classification Criteria for Aducanumab?

Radiographic severity

ARIA type Moderate Severe

ARIA-E Fluid-attenuated inversion FLAIR hyperintensity 5 to FLAIR hyperintensity measuring
recovery (FLAIR) hyperintensity 10 cm or more than one site of ~ >10 cm, often with significant
confined to sulcus and/or cortex/ involvement, each measuring  subcortical white matter and/or
subcortical white matter in one <10 cm sulcal involvement; one or more
location <5 cm separate sites of involvement may

be noted

ARIA-H <4 new incident 5to 9 new incident 10 or more new incident

microhemorrhage microhemorrhages microhemorrhages microhemorrhages

ARIA-H superficial 1focal area of superficial siderosis 2 focal areas of superficial >2 focal areas of superficial

siderosis siderosis siderosis

ARIA = amyloid-related imaging abnormalities; ARIA-E = amyloid-related imaging abnormalities with vasogenic edema with or without sulcal
effusion; ARIA-H = amyloid-related imaging abnormalities with hemorrhage and superficial siderosis.

@ Reprinted from the US Food and Drug Administration.®®
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FIGURE 7-9

Examples of amyloid-related imaging abnormalities (ARIA). A, Axial susceptibility-weighted
imaging (SWI) shows ARIA-H with cerebral microhemorrhages (arrows); B, Axial SWI shows
the superficial siderosis that can be seen in ARIA-H and indicates hemosiderin staining on
the pial surface of the brain (arrows); C, Axial imaging fluid-attenuated inversion recovery
(FLAIR) image shows ARIA-E with multiple areas of edema.

the question of NPH versus AD can be a diagnostic dilemma; however,
volumetric quantification can be useful in resolving the dilemma. In FIGURE 7-12,
the increased ventricular volume (99th percentile) and the comparison of
ventricular to cerebral volume suggests ventriculomegaly out of proportion

to brain atrophy. Lack of hippocampal atrophy for this amount of
ventriculomegaly in the presence of suggestive clinical findings for NPH suggests

FIGURE 7-10

Normal and abnormal dopamine transporter scans. A, Normal dopamine transporter scan shows
dopamine uptake in the basal ganglia with a typical lentiform morphology. B, Abnormal dopamine
transporter scan showing reduced dopamine uptake in the basal ganglia with a rounded shape.
Orange to white intensity of color indicates increased dopamine uptake. Blue to purple intensity of
colors denotes lack of dopamine uptake.
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FIGURE 7-11

MRI findings suggestive of normal pressure hydrocephalus in a patient who presented with
falls, urinary incontinence, and memory loss. A, Axial fluid-attenuated inversion recovery
(FLAIR) MRI shows ventriculomegaly out of proportion to sulcal dilatation. B, Coronal
T1-weighted MRI shows a reduced callosal angle of 76 degrees. The callosal angle is
measured at the level of the posterior commissure on a coronal image. In a patient with
clinical features suggestive of normal pressure hydrocephalus, a callosal angle of 50 to

80 degrees is more suggestive of normal pressure hydrocephalus, whereas a callosal angle
of 100 to 120 degrees is less suggestive of normal pressure hydrocephalus. C, Sagittal
T2-weighted MRI shows tenting of the lateral ventricle (arrows). D, Axial T2-weighted MRI
shows a CSF flow void in the cerebral aqueduct (arrow).

that the clinical findings are more likely related to NPH rather than to AD
dementia, although these pathologies can coexist.”®

CONCLUSION

The elements of neuroradiologic reporting are changing from historically focused
reports that rule out structural causes of dementia. New reporting is now
supplemented by quantification of regional brain volumes to characterize
neuroimaging correlates of neurodegeneration. Additional semiquantitative
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FIGURE 7-12
Volumetric quantification findings in a case of normal pressure hydrocephalus show
abnormally elevated ventricular volume out of proportion to cerebral volume (A, B) and
relatively preserved hippocampal volume (C, D).
imaging metrics of small vessel ischemic disease and cerebral microbleeds
provide additional insights into other contributors to cognitive decline
and dementia. All this information is obtainable from a single brain MRI
that is already recommended in dementia evaluation. However, volumetric
quantification, although readily available, has yet to be widely implemented
and may require increased education and awareness among practicing
clinicians. Additionally, further work must be done to combine available brain
MRI information with other biomarkers from PET and fluid biomarkers to
identify individuals at risk for dementia earlier in the disease process, thus
allowing for increased effectiveness of risk reduction measures and new
treatments.
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